function [results] = moore1997(inSig,fs)
%MOORE1997 - Loudness model for stationary signals
% Usage: [results] = moore1997(inSig,fs);
%
% Example:
%
% fs = 32000;
% t = linspace(0,1,fs);
% sig = sin(2*pi*1000*t).';
% inSig = setdbspl(sig,100);
%
% Note that currently fs must be 32000 Hz.
%
% References:
% B. C. J. Moore, B. R. Glasberg, and T. Baer. A Model for the Prediction
% of Thresholds, Loudness, and Partial Loudness. J. Audio Eng. Soc,
% 45(4):224--240, 1997.
%
%
% Url: http://amtoolbox.sourceforge.net/data/amt-test/htdocs/amt-0.10.0/doc/models/moore1997.php
% Copyright (C) 2009-2020 Piotr Majdak and the AMT team.
% This file is part of Auditory Modeling Toolbox (AMT) version 0.10.0
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
% AUTHOR: Thomas Deppisch
%% model
fVec = 20:fs/2;
data = data_glasberg2002('tfOuterMiddle1997','fieldType','free','fVec',fVec);
% filter order as in glasberg2002
order = 4096;
% create FIR filter
tfLinear = 10.^(data.tfOuterMiddle/10);
outerMiddleFilter = fir2(order, linspace(0, 1, length(fVec)), tfLinear);
earSig = filtfilt(outerMiddleFilter,1,inSig); % why does filter(..) not work?
% compute fft
spect = fft(earSig);
fftLen = length(spect);
binWidth = fs/(fftLen+2); % bandwidth in Hz represented by 1 fft frequency bin
oneHz = (fftLen+2)/fs; % number of frequency bins representing 1Hz
numBins = round(fftLen/2+1);
compInt = 2*abs(spect(1:numBins)).^2/(numBins*fs); % psd
compdB = 10*log10(compInt./(20e-6)^2); % intensity level in dBSPL
compFq = linspace(0,fs/2,numBins);
nPoints = length(compFq);
compErb = fc2erbN(compFq);
% calculate ERB numbers corresponding to ERB mid frequencies
erbStep = 0.25;
erbFcMin = 50;
erbFcMax = 15000;
erbNMin = fc2erbN(erbFcMin);
erbNMax = fc2erbN(erbFcMax);
erbN = erbNMin:erbStep:erbNMax; % numbers of erb bands
erbFc = erbN2fc(erbN); % center frequency of erb bands
erbLoFreq = erbN2fc(erbN-0.5); % lower limit of each ERB filter
erbHiFreq = erbN2fc(erbN+0.5); % upper limit of each ERB filter
%calculate intensity for each ERB (dB/ERB)
for ii=1:length(erbFc)
range = round(erbLoFreq(ii)*oneHz):round(erbHiFreq(ii)*oneHz);
erbInt(ii) = sum(compInt(range)); % intensity sum in each erb
end
erbdB = 10*log10(erbInt./(20e-6)^2); % intensity level in each erb using reference SPL of 20 uPa
p511 = 4*1000/f2erb(1000); % p for fc=1kHz and a level of 51dB (at 1kHz filters are symmetrical)
erbdB2F = interp1([0 erbFc fs/2], [min(erbdB) erbdB min(erbdB)], compFq); % map erbFc to compFq
for e = 1:length(erbN)
erb = f2erb(erbFc(e));
p51 = 4*erbFc(e)/erb;
intensity = 0;
for comp = 1:nPoints
g = (compFq(comp)-erbFc(e))/erbFc(e);
if g<0
p = p51 - 0.35*(p51/p511) * (erbdB2F(comp)-51);
else
p = p51;
end
g = abs(g);
w = (1+p*g)*exp(-p*g);
intensity = intensity+w*compInt(comp); %intensity per erb
end
eL(e) = intensity;
end
results.eLdB = 10*log10(eL./(20e-6)^2); % get dB SPL (20uPa reference)
results.erbN = erbN;
%% calculating specific loudness
dataSL = data_glasberg2002('specLoud','fVec',erbFc);
tQdB = dataSL.tQ;
tQ = 10.^(tQdB./10);
tQdB500 = dataSL.tQ500;
gdB = dataSL.g; % low level gain in cochlea amplifier
g = 10.^((tQdB500-tQdB)/10);
a = dataSL.a; % parameter for linearization around absolute threshold
alpha = dataSL.alpha; % compressive exponent
c = dataSL.c; % constant to get loudness scale to sone
specLoud = zeros(size(eL));
specLoud1 = c*(2*eL./(eL+tQ)).^1.5 .*((g.* eL + a).^alpha-a.^alpha);
specLoud2 = c * ((g .*eL + a).^alpha - a.^alpha);
specLoud3 = c*(eL./1.04e6).^0.5;
specLoud(eL<tQ) = specLoud1(eL<tQ);
specLoud(eL<=10^10 & eL>tQ) = specLoud2(eL<=10^10 & eL>tQ);
specLoud(eL>10^10) = specLoud3(eL>10^10);
%% monaural/binaural loudness (= instantaneous loudness), short term loudness (STL), l