function d = taal2011(sigclean, sigproc, fs)
%TAAL2011 The Short-time objective intelligibility measure (STOI)
% Usage: d = taal2011(sigclean, sigproc, fs);
%
% d = stoi(sigclean, sigproc, fs) returns the output of the Short-Time
% Objective Intelligibility (STOI) measure described in Taal
% et. al. (2010) & (2011), where sigclean and sigproc denote the clean and
% processed speech, respectively, with sample rate fs measured in
% Hz. The output d is expected to have a monotonic relation with the
% subjective speech-intelligibility, where a higher d denotes better
% intelligible speech. See Taal et. al. (2010) & (2011) for more details.
%
% The model consists of the following stages:
%
% 1) Removal of silent frames. Frames (of length 512) of the input
% signals that have an energy of 40 dB less than the most energetic
% frame are removed.
%
% 2) Expansion of the signals into a Fourier filterbank with a Hanning
% window length of 25ms and 256 channels covering the the frequency
% range from 0 to 5 kHz. The energy of the bands are then summed
% into third-octaves
%
% 3) The output d is computed by a correlation process. See the
% referenced papers for more details.
%
% Examples:
% ---------
%
% The following example shows a simple comparison between the
% intelligibility of a noisy speech signal and the same signal after
% noise reduction using a simple soft thresholding (spectral
% subtraction):
%
% % Get a clean and noisy test signal
% [f,fs]=cocktailparty;
% Ls=length(f);
% f_noisy=f+0.05*pinknoise(Ls,1);
%
% % Simple spectral subtraction to remove the noise
% a=128; M=256; g=gabtight('hann',a,M);
% c_noise = dgtreal(f,g,a,M);
% c_removed = thresh(c_noise,0.01);
% f_removed = idgtreal(c_removed,g,a,M);
% f_removed = f_removed(1:Ls);
%
% % Compute the STOI of noisy vs. removed
% d_noisy = taal2011(f, f_noisy, fs)
% d_removed = taal2011(f, f_removed, fs)
%
% The original STOI model can be downloaded from
% http://msp.ewi.tudelft.nl/content/short-time-objective-intelligibility-measure
% This is a standalone version not depending on LTFAT and AMToolbox,
% and licensed under a different license, but the models are
% functionally equivalent.
%
% References:
% C. H. Taal, R. C. Hendriks, R. Heusdens, and J. Jensen. A Short-Time
% Objective Intelligibility Measure for Time-Frequency Weighted Noisy
% Speech. In Acoustics Speech and Signal Processing (ICASSP), pages
% 4214--4217. IEEE, 2010.
%
% C. H. Taal, R. C. Hendriks, R. Heusdens, and J. Jensen. An Algorithm
% for Intelligibility Prediction of Time-Frequency Weighted Noisy Speech.
% IEEE Transactions on Audio, Speech and Language Processing,
% 19(7):2125--2136, 2011.
%
%
% Url: http://amtoolbox.sourceforge.net/data/amt-test/htdocs/amt-0.10.0/doc/models/taal2011.php
% Copyright (C) 2009-2020 Piotr Majdak and the AMT team.
% This file is part of Auditory Modeling Toolbox (AMT) version 0.10.0
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
%% -------- Model parameters ---------------------------------
fs_model = 10000; % Sample rate of proposed intelligibility measure
N_frame = 256; % Window support
K = 512; % FFT size
J = 15; % Number of 1/3 octave bands
mn = 150; % Center frequency of first 1/3 octave band in Hz.
N = 30; % Number of frames for intermediate intelligibility
% measure (Length analysis window)
Beta = -15; % Lower SDR-bound
dyn_range = 40; % Speech dynamic range
%% -------- Checking and initialization ---------------------
% constant for clipping procedure
c = 10^(-Beta/20);
if length(sigclean)~=length(sigproc)
error('sigclean and sigproc should have the same length');
end
% Number of signals
W=size(sigclean,2);
% Get 1/3 octave band matrix
H = thirdoct(fs_model, K, J, mn);
% resample signals if other samplerate is used than fs_model The original
% model used the "resample" function. However, this function not part of the
% Matlab core functions and is not (at the time of writing) included in
% Octave.
if fs ~= fs_model
newlength= round(length(sigclean)/fs*fs_model);
sigclean = fftresample(sigclean, newlength);
sigproc = fftresample(sigproc, newlength);
end
% Loop over multi-signals
d=zeros(1,W);
for w=1:W
x=sigclean(:,w);
y=sigproc(:,w);
%% -------- Compute TF representation
% Remove silent frames. Below, the clean signal is now called "x" and the
% processed signal is called "y"
[x,y] = removeSilentFrames(x,y,dyn_range, N_frame, N_frame/2);
% Compute sampled short-time Fourier transforms using LTFAT
x_hat=dgtreal(x,{'hann',N_frame},N_frame/2,K);
y_hat=dgtreal(y,{'hann',N_frame},N_frame/2,K);
N_timesteps=size(x_hat, 2);
% Collect the frequency bands into the 1/3 octave band TF-representation
% This is done through multiplication with a sparse matrix consisting of
% 0 and 1's
X = sqrt(H*abs(x_hat).^2);
Y = sqrt(H*abs(y_hat).^2);
%% -------- Compute the intelligibility measure
% loop al segments of length N and obtain intermediate intelligibility measure for all TF-regions
% init memory for intermediate intelligibility measure
d_interm = zeros(J, length(N:size(X, 2)));
for m = N:size(X, 2)
% regions with length N of clean and processed TF-units for all j
X_seg = X(:, (m-N+1):m);
Y_seg = Y(:, (m-N+1):m);
% obtain scale factor for normalizing processed TF-region for all j
alpha = sqrt(sum(X_seg.^2, 2)./sum(Y_seg.^2, 2));
% obtain \alpha*Y_j(n) from Eq.(2) [1], pointwise mul with alpha
aY_seg = bsxfun(@times,Y_seg,alpha);
for jj = 1:J
% apply clipping from Eq.(3)
Y_prime = min(aY_seg(jj, :), X_seg(jj, :)+X_seg(jj, :)*c);
% obtain correlation coeffecient from Eq.(4) [1]
d_interm(jj, m-N+1) = taa_corr(X_seg(jj, :).', Y_prime(:));
end
end
% combine all intermediate intelligibility measures as in Eq.(4) [1]
d(w) = mean(d_interm(:));
end;
%% --------- Subfunctions -------------------------------
function [A cf] = thirdoct(fs, N_fft, numBands, mn)
% [A CF] = THIRDOCT(FS, N_FFT, NUMBANDS, MN) returns 1/3 octave band matrix
% inputs:
% FS: samplerate
% N_FFT: FFT size
% NUMBANDS: number of bands
% MN: center frequency of first 1/3 octave band
% outputs:
% A: octave band matrix
% CF: center frequencies
f = linspace(0, fs, N_fft+1);
f = f(1:(N_fft/2+1));
k = 0:(numBands-1);
cf = 2.^(k/3)*mn;
fl = sqrt((2.^(k/3)*mn).*2.^((k-1)/3)*mn);
fr = sqrt((2.^(k/3)*mn).*2.^((k+1)/3)*mn);
%A = spzeros(numBands, length(f));
A = sparse(numBands, length(f));
for ii = 1:(length(cf))
[a b] = min((f-fl(ii)).^2);
fl(ii) = f(b);
fl_ii = b;
[a b] = min((f-fr(ii)).^2);
fr(ii) = f(b);
fr_ii = b;
A(ii,fl_ii:(fr_ii-1)) = 1;
end
rnk = sum(A, 2);
numBands = find((rnk(2:end)>=rnk(1:(end-1))) & (rnk(2:end)~=0)~=0, 1, 'last' )+1;
A = A(1:numBands, :);
cf = cf(1:numBands);
%%
%%
function [x_sil y_sil] = removeSilentFrames(x, y, range, N, K)
% [X_SIL Y_SIL] = REMOVESILENTFRAMES(X, Y, RANGE, N, K) X and Y
% are segmented with frame-length N and overlap K, where the maximum energy
% of all frames of X is determined, say X_MAX. X_SIL and Y_SIL are the
% reconstructed signals, excluding the frames, where the energy of a frame
% of X is smaller than X_MAX-RANGE
x = x(:);
y = y(:);
frames = 1:K:(length(x)-N);
w = hanning(N);
msk = zeros(size(frames));
for j = 1:length(frames)
jj = frames(j):(frames(j)+N-1);
msk(j) = 20*log10(norm(x(jj).*w)./sqrt(N));
end
msk = (msk-max(msk)+range)>0;
count = 1;
x_sil = zeros(size(x));
y_sil = zeros(size(y));
for j = 1:length(frames)
if msk(j)
jj_i = frames(j):(frames(j)+N-1);
jj_o = frames(count):(frames(count)+N-1);
x_sil(jj_o) = x_sil(jj_o) + x(jj_i).*w;
y_sil(jj_o) = y_sil(jj_o) + y(jj_i).*w;
count = count+1;
end
end
x_sil = x_sil(1:jj_o(end));
y_sil = y_sil(1:jj_o(end));
%%
function rho = taa_corr(x, y)
% RHO = TAA_CORR(X, Y) Returns correlation coeffecient between column
% vectors x and y. Gives same results as 'corr' from statistics toolbox.
xn = x-mean(x);
yn = y-mean(y);
rho = dot(xn/norm(xn),yn/norm(yn));