function m = baumgartner2014virtualexp(p,tang,rang,varargin)
%BAUMGARTNER2014VIRTUALEXP - Performs a virtual sound-localization experiment
% Usage: m = baumgartner2014virtualexp(p,tang,rang)
%
% Input parameters:
% p : prediction matrix containing probability mass vectors (PMVs)
% for the polar response angle as a function of the polar
% target angle (1st dim: response angle, 2nd dim: target
% angle)
% rang : polar response angles
% tang : polar target angles
%
% Output parameter:
% m : item list of virtual experiment
% Columns:
% 1:4 ... azi_target,ele_target,azi_response,ele_response
% 5:8 ... lat_target,pol_target,lat_response,pol_response
% 9 ... F/B-C resolved pol_response
%
% BAUMGARTNER2014VIRTUALEXP(...) runs virtual localization experiments where the
% response behavior is based on (predicted) polar response PMVs.
%
% BAUMGARTNER2014VIRTUALEXP accepts the following optional parameters:
%
% 'runs',runs Define the number of runs.
% Default value is 10.
%
% 'targetset',ts Define the set of polar target angles.
% As default 'tang' is used.
%
% 'lat',lat Define the lateral target angles.
% Default value is 0 deg.
%
% See also: localizationerror, baumgartner2014, plot_baumgartner2014
%
%
% Url: http://amtoolbox.sourceforge.net/data/amt-test/htdocs/amt-0.9.8/doc/modelstages/baumgartner2014virtualexp.php
% Copyright (C) 2009-2015 Piotr Majdak and Peter L. Søndergaard.
% This file is part of AMToolbox version 0.9.8
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
% References: baumgartner2014modeling
% AUTHOR: Robert Baumgartner
definput.keyvals.runs = 10;
definput.keyvals.targetset = [];
definput.keyvals.lat = 0;
% definput.flags.colorbar = {'colorbar','nocolorbar'};
[flags,kv]=ltfatarghelper({'runs','targetset'},definput,varargin);
if isempty(kv.targetset)
kv.targetset = tang;
end
%% Run experiments
nt=length(kv.targetset);
m = nan(nt*kv.runs,9);
m(:,5) = kv.lat;
m(:,6) = repmat(kv.targetset(:),kv.runs,1);
m(:,7) = kv.lat;
% kv.targetset = round(kv.targetset);
if length(tang) > 1
tangbound = tang(:)+0.5*diff([tang(1)-diff(tang(1:2));tang(:)]);
else
tangbound = tang;
end
post=zeros(nt,1); % indices of target positions
for ii = 1:nt
if kv.targetset(ii) > max(tangbound)
post(ii) = length(tangbound); % if outside predicted range, set to most extreme possible position
else
post(ii) = find(tangbound>=kv.targetset(ii),1);
end
end
posr=zeros(nt,1);
for rr=1:kv.runs
for jj = 1:nt
posr(jj) = discreteinvrnd(p(:,post(jj)),1);
m(jj+(rr-1)*nt,8) = rang(posr(jj));
end
end
end
function [ X ] = discreteinvrnd(p,n,m)
% DISCRETEINVRND implements an inversion method for a discrete distribution
% with probability mass vector p for n trials
% Usage: [ X ] = discreteinvrnd(p,n)
%
% AUTHOR : Robert Baumgartner
if ~exist('m','var')
m=1;
end
p = p/sum(p); % ensure probability mass vector
c = cumsum(p);
t = max(c)*rand(n,m); % rand returns ]0,1]
X = zeros(n,m);
for jj = 1:m
for ii = 1:n
X(ii,jj) = find(c >= t(ii,jj) ,1);
end
end
end