function [E,varargout] = baumgartner2020( target,template,varargin )
%BAUMGARTNER2020 Model for sound externalization
% Usage: [E,cues,cueLabels] = baumgartner2020( target,template )
%
% Input parameters:
%
% target : binaural impulse response(s) referring to the directional
% transfer function(s) (DFTs) of the target sound(s).
%
% Option 1: given in SOFA format -> sagittal plane DTFs will
% be extracted internally.
%
% Option 2: binaural impulse responses of all available
% listener-specific DTFs of the sagittal plane formated
% according to the following matrix dimensions:
% time x direction x channel/ear
% template : binaural impulse responses of all available
% listener-specific DTFs of the sagittal plane referring to
% the perceived lateral angle of the target sound.
% Options 1 & 2 equivalent to target.
%
% Output parameters:
%
% E : predicted degree of externalization
% cues : outcomes of individual cues
% cueLabels : cue labels; cell array with 1st col. denoting acronyms
% and 2nd column for descriptions
%
% baumgartner2019(...) is a model for sound externalization.
% It bases on the comparison of the intra-aural internal representation
% of the incoming sound with a template and results in a probabilistic
% prediction of polar angle response.
%
% BAUMGARTNER2020 accepts the following optional parameters:
%
% 'cueWeights',cW : Set the weights of individual cues to determine the
% final externalization score. Cue-specific weights
% (entered as a vector) are ordered as follows:
%
% 1. monaural spectral similarity (MSS)
% 2. interaural spectral similarity of ILDs (ISS)
% 3. spectral standard deviation of monaural gradients
% (MSSD)
% 4. spectral standard deviation of ILDs (ISSD)
% 5. interaural broadband time-intensity coherence
% (ITIT)
% 6. interaural coherence (IC)
% 7. monaural intensity difference (MI)
% 8. temporal standard deviation of ILDs (ITSD).
%
% Default weights are 0.67 for MSS, 0.33 for ITIT,
% and 0 for all others.
%
% 'S',S : Set the cue-specific sensitivity parameter to S.
% 1/S represents the slope of sigmoidal mapping function.
% Vector order equivalent to cueWeights.
% Default values are determined by the weighted average
% sensitivities determined in Baumgartner and Majdak
% (2020) - run exp_BAUMGARTNER2020('tab2') to show them.
%
% 'lat',lat : Set the apparent lateral angle of the target sound to lat.
% Default value is 0 degree (median SP).
%
% 'range',c1 : Set the range factor of the externalization scores to c1.
% Default value is 3.78 from Hassager et al. (2016).
%
% 'offset',c2 : Set the offset of the externalization score to c2.
% Default value is 1 from Hassager et al. (2016).
%
% 'ILD_JND',L : Set the just noticeable ILD difference to L from the
% internal template. Default value is 1 (dB).
%
% ITD_JND',T : Set the just noticeable ITD difference to T from the
% internal template. Default value is 20e-6 (s).
%
% BAUMGARTNER2020 accepts the following flags:
%
% 'LTA' : Looser-takes-all strategy: Model selects minimal
% predicted externalization scores across cues with
% weights larger than zero.
%
%
% Requirements:
% -------------
%
% 1) SOFA API from http://sourceforge.net/projects/sofacoustics for Matlab (in e.g. thirdparty/SOFA)
%
% 2) Data in hrtf/baumgartner2017
%
% 3) Circular Statistics Toolbox from http://www.mathworks.com/matlabcentral/fileexchange/10676-circular-statistics-toolbox--directional-statistics-
%
%
% See also: baumgartner2020_mapping, exp_baumgartner2020,
% baumgartner2016_spectralanalysis, baumgartner2016_gradientextraction,
% baumgartner2014_binauralweighting
%
% References:
% R. Baumgartner and P. Majdak. Decision making in auditory
% externalization perception. bioRxiv, 2020.
%
%
% Url: http://amtoolbox.sourceforge.net/data/amt-test/htdocs/amt-0.10.0/doc/models/baumgartner2020.php
% Copyright (C) 2009-2020 Piotr Majdak and the AMT team.
% This file is part of Auditory Modeling Toolbox (AMT) version 0.10.0
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
% AUTHOR: Robert Baumgartner, Acoustics Research Institute, Vienna, Austria
%% Check input
definput.import={'baumgartner2020','baumgartner2016','baumgartner2014','amt_cache'};
definput.flags.gradients={'positive','negative','both'};
definput.flags.strategy={'fixedWeights','LTA'};
definput.keyvals.cueWeights = [0.67,0,0,0,0.33,0,0,0];
definput.keyvals.S = [0.16257 0.39863 2.2518e+14 0.45234 0.69824 0.36648 NaN NaN];
[flags,kv]=ltfatarghelper({'cueWeights','S'},definput,varargin);
flags.do_plot = false;
if not(isstruct(target)) && ismatrix(target)
target = permute(target,[1,3,2]);
end
if not(isstruct(template)) && ismatrix(template)
template = permute(template,[1,3,2]);
end
%% Print Settings
if flags.do_print
if flags.do_nomrs
kv.mrsmsp = 0;
end
amt_disp(['Settings: PSGE = ' num2str(kv.do,'%1.0f') '; Gamma = ' ...
num2str(kv.gamma,'%1.0u') '; Epsilon = ' num2str(kv.mrsmsp,'%1.0f') ' deg'])
end
%% Determine lateral angle and extract HRTFs of sagittal plane
if isstruct(target) % Targets given in SOFA format
kv.fs = target.Data.SamplingRate;
[target,~] = extractsp( kv.lat,target );
end
if isstruct(template) % Template given in SOFA format
[template,~] = extractsp( kv.lat,template );
end
%% Optional: Middle ear filtering
if flags.do_middleEarFilter
b=middleearfilter(kv.fs);
target = filter(b,1,target);
template = filter(b,1,template);
end
%% Optional: HRTF filtering
dimtar = size(target); % for lconv dim check
if not(isempty(kv.stim))
target = lconv(target,kv.stim);
end
% check that lconv preserved matrix dimensions (earlier bug in lconv)
if size(target,2) ~= dimtar(2)
target = reshape(target,[size(target,1),dimtar(2:end)]);
end
%% Level difference
MI = dbspl(target) - dbspl(template);
MI = abs(MI);
MI(abs(MI)<kv.ILD_JND) = 0;
MI = MI./dbspl(template);
MI = baumgartner2014_binauralweighting(MI,'argimport',flags,kv); % Eq. 1
% MI = mean(MI,3); % Eq. 1
%% ITD & IC
[tem.itd,~,tem.iacc] = itdestimator(shiftdim(template,1),'fs',kv.fs,'MaxIACCe','silent');
[tar.itd,~,tar.iacc] = itdestimator(shiftdim(target,1),'fs',kv.fs,'MaxIACCe','silent');
tem.ic = baumgartner2017_iacc(squeeze(template),'argimport',flags,kv);
tar.ic = baumgartner2017_iacc(squeeze(target),'argimport',flags,kv);
IC = abs(tar.ic-tem.ic) / tem.ic; % Eq. 2
%% Filterbank
[tem.mp,fc] = baumgartner2016_spectralanalysis(template,70,'argimport',flags,kv,'tiwin',size(template,1)*kv.fs,'gammatone','redo');
tar.mp = baumgartner2016_spectralanalysis(target,70,'argimport',flags,kv,'tiwin',size(target,1)*kv.fs,'gammatone','redo');
%% interaural temporal SD of ILDs (Catic et al., 2015)
MinNumTimeFrames = 20;
if size(tem.mp,5) >= MinNumTimeFrames && size(tar.mp,5) >= MinNumTimeFrames
tem.STild = -diff(tem.mp,1,3); % short-term ILDs
tar.STild = -diff(tar.mp,1,3);
ITSD = 1 - mean(std(tar.STild,0,5)./std(tem.STild,0,5));
else
ITSD = nan;
end
%% Echo suppression
if isscalar(kv.reflectionOnsetTime) % evaluate only direct path (DP)
idDP = round(kv.reflectionOnsetTime*kv.fs);
N1ms = round(1e-3*kv.fs); % 1 ms fade out
taper = [ones(1,idDP-N1ms) , 0.5*(1+cos(linspace(0,pi,N1ms)))];
temTaper = repmat([taper(:);zeros(size(template,1)-idDP,1)],...
[1,size(template,2),size(template,3)]);
tarTaper = repmat([taper(:);zeros(size(target,1)-idDP,1)],...
[1,size(target,2),size(target,3)]);
[tem.mp,fc] = baumgartner2016_spectralanalysis(temTaper.*template,70,... % or save to temDP.mp
'argimport',flags,kv,'tiwin',kv.tempWin,'gammatone','redo');
tar.mp = baumgartner2016_spectralanalysis(tarTaper.*target,70,... % or save to tarDP.mp
'argimport',flags,kv,'tiwin',kv.tempWin,'gammatone','redo');
end
if flags.do_plot
for ear = 1:2
subplot(1,2,ear)
semilogx(fc,squeeze(tar.mp(:,1,ear)))
xlabel('Frequency (Hz)')
ylabel('RMS magnitude (dB)')
hold on
end
end
%% Spectral cues
tem.psg = baumgartner2016_gradientextraction(tem.mp,fc,'mgs',1,flags.gradients);
tem.ild = diff(tem.mp,1,3);
tar.psg = baumgartner2016_gradientextraction(tar.mp,fc,'mgs',1,flags.gradients);
tar.ild = diff(tar.mp,1,3);
%% Spectral comparison
MSSD = abs(std(tar.psg.m)-std(tem.psg.m))./std(tem.psg.m);
MSSD = baumgartner2014_binauralweighting(MSSD,'argimport',flags,kv);
ISSD = abs(std(tar.ild)-std(tem.ild))./std(tem.ild);
for iSC = 1:2 % first monaural then interaural
if iSC == 1 % monaural spectral gradients
tem.nrep = tem.psg.m;
tar.nrep = tar.psg.m;
elseif iSC == 2 % interaural spectral differences
tem.nrep = tem.ild;
tar.nrep = tar.ild;
end
% comparison with time average of spectral template
targetprofile = {tar.nrep};
if flags.do_dprime
targetprofile{2} = tem.nrep;
end
tem.nrep = mean(tem.nrep,5);
d_cue = cell(length(targetprofile),1);
for inrep = 1:length(targetprofile)
templateprofile = repmat(tem.nrep,[1,1,1,1,size(targetprofile{inrep},5)]);
delta = abs(templateprofile-targetprofile{inrep});
delta(delta < kv.ILD_JND) = 0; % limit minimum ILD difference according to JND
d_cue{inrep} = mean(delta./(eps+abs(templateprofile))); % Eq. (4)
if iSC == 1 % do_intraaural
d_cue{inrep} = baumgartner2014_binauralweighting(d_cue{inrep},'argimport',flags,kv); % Eq. 7
end
end
% temporal integration
if length(d_cue{1}) == 1
distmetric = d_cue{1};
elseif flags.do_dprime % signal detection theory applied to time histograms
% figure; histogram(sigma{1}); hold on ; histogram(sigma{2}); legend('target','reference')
allsigma = [d_cue{1}(:);d_cue{2}(:)];
msigma = mean(allsigma);
sdsigma = std(allsigma);
mzsigma(1) = mean((d_cue{1}-msigma) ./ sdsigma);
mzsigma(2) = mean((d_cue{2}-msigma) ./ sdsigma);
dprime = max(mzsigma(1)-mzsigma(2),0);
distmetric = dprime;
else % temporal weighting according to amount of sensory information available
tweight = mean(mean(abs(tar.nrep)),3); % temporal weighting
tweight = tweight-min(tweight,[],5); % bounded between 0
tweight = 2*tweight./max(tweight,[],5); % and 2
distmetric = d_cue{1}.*tweight;
distmetric = mean(distmetric,5);
end
if iSC == 1
MSS = distmetric; % monaural spectral distance
elseif iSC == 2
ISS = distmetric; % interaural spectral distance
end
end
%% Interaural time-intenstiy coherence (ITIC) -> dprime possible
ITR = tar.itd./(eps+tem.itd) -1; % Eq. 5a
ITR(abs(tar.itd - tem.itd) < kv.ITD_JND) = 0;
ILR = mean(tar.ild)./(mean(tem.ild)+eps) -1; % Eq. 5b
ILR(any(abs(mean(tar.ild) - mean(tem.ild)) < kv.ILD_JND,1)) = 0;
ITIT = abs( ITR - ILR(:) ); % Eq. 5(a+b)
%% Cue integration/weighting
cues = [MSS; ISS; MSSD; ISSD; ITIT; IC; MI; ITSD];
cueLbl = {'MSS',['Monaural ',flags.gradients,' spectral gradients (c.f., Baumgartner et al., 2014)']; ...
'ISS','Interaural spectral shape (c.f., Hassager et al., 2016)'; ...
'MSSD',['Spectral SD of monaural ',flags.gradients,' spectral gradients (c.f., Baumgartner et al., 2014)']; ...
'ISSD','Spectral SD of interaural spectral differences (c.f., Georganti et al., 2013)'; ...
'ITIT','Interaural time-intensity trading (ITD vs. ILD)'; ...
'IC','Interaural coherence (c.f., Hassager et al., 2017)'; ...
'MI','Monaural intensity difference (target - reference)'; ...
'ITSD','Interaural temporal standard deviation (c.f., Catic et al., 2015)'; ...
};
if isscalar(kv.S)
kv.S = repmat(kv.S,[length(cues),1]);
else
kv.S = postpad(kv.S(:),length(cues));
end
E = baumgartner2020_mapping(cues,kv.S,kv.range,kv.offset); % Eq. 8
kv.cueWeights = postpad(kv.cueWeights(:),length(cues))/sum(kv.cueWeights);
if flags.do_LTA
E = min(E(kv.cueWeights>0));
elseif flags.do_fixedWeights
E = nansum(kv.cueWeights .* E);
end
if nargout >= 2
varargout{1} = cues;
varargout{2} = cueLbl;
end
end